

Multi-task group Lasso for Genome Wide Association Studies in diverse populations

Asma Nouira

MINES ParisTech, CBIO-Centre for Computational Biology, Institut Curie, INSERM, U900, PSL Research University

October 25th 2021

Asma Nouira

PhD Student in bioinformatics Centre for Computational Biology (CBIO) Mines ParisTech and Institu Curie **PhD advisor:** Chloé-Agathe Azencott

Background:

Engineer Master's degree Machine Learning

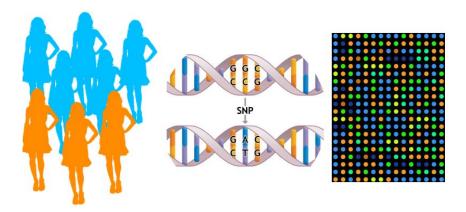
Chloé-Agathe Azencottt

Thomas Walter, Director of CBIO

Genome Wide Association Studies

- The Human Genome Project (HGP) provides a good mapping to decode the whole genome at Single Nucleotide Variant (SNVs) level.
- Single Nucleotide Polymorphism (SNPs) are common SNVs at a frequency of 1%.
- 3 billions base pair divided in 24 chromosomes.
- 15 millions SNPs.
- Find association between genome and disease risk.

Genome Wide Association Studies



Goal: Find association between the genotype and the phenotype.

- The genotype: Single Nucleotide Polymorphism (SNP) arrays.
- The phenotype:
 - Quantitative: BMI, weight, height, etc.
 - Qualitative: Case-control study

Challenges in GWAS analysis

01	02	03	04	05
Single marker analysis	Population stratification	Linkage disequilibrium	Computational limitations	Lack of stability
Testing each SNP individually	Difference in allele frequencies between subpopulations	Dependence relationship between two alleles at two different loci	For complex methods: - Memory errors - Very slow	Susceptibility to small perturbations in the data set

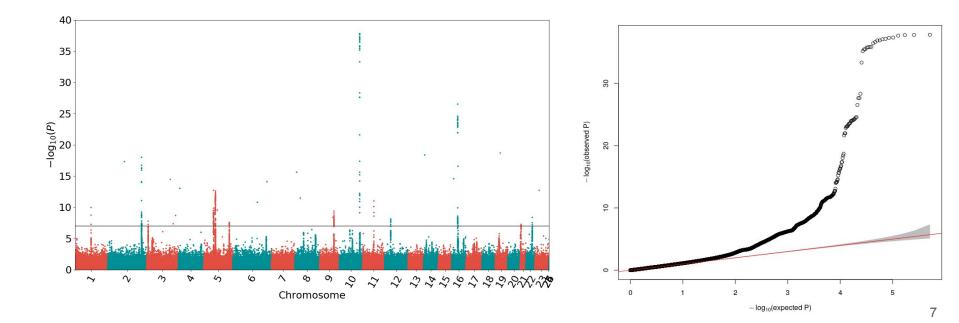
01	02	03	04	05
Single-marker analysis	Population stratification	Linkage disequilibrium	Computational limitation	Lack of stability
Testing each SNP individually	Difference in allele frequencies between subpopulations	Dependence relationship between two alleles at two different loci	For complex methods: - Memory errors - Very slow	Susceptibility to small perturbations in the data set

From GWAS to Machine Learning

• Single-marker analysis:

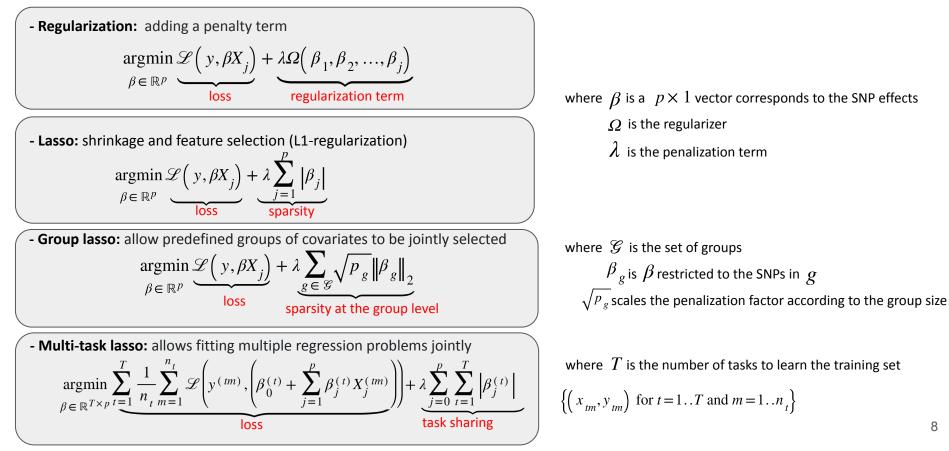
Given a phenotype y, X is the genotype matrix:

For each feature \mathbf{X}_{j} , we fit a single-predictor equation $\mathbf{y} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{j} \mathbf{X}_{j} + \varepsilon \Rightarrow$ p-value from a t-test against an intercept-only model $H_{0} = \left\{ \boldsymbol{\beta}_{j} = 0 \right\}$.



From GWAS to Machine Learning

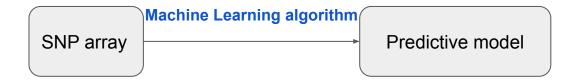
• Multi-variate approach: Feature selection based on regularization



From GWAS to Machine Learning

• Microarray data: SNP arrays

Curse of dimensionality (p>>N): $p \approx 10^5 - 10^7$, $N \approx 10^2 - 10^4$



• Biomarker identification : feature selection models



01	02	03	04	05
Single marker analysis	Population stratification	Linkage disequilibrium	Computational limitation	Lack of stability
Testing each SNP individually	Difference in allele frequencies between subpopulations	Dependence relationship between two alleles at two different loci	For complex methods: - Memory errors - Very slow	Susceptibility to small perturbations in the data set

Population stratification

Population stratification refers to the presence of differences in allele frequencies between subpopulations due to different ancestry.

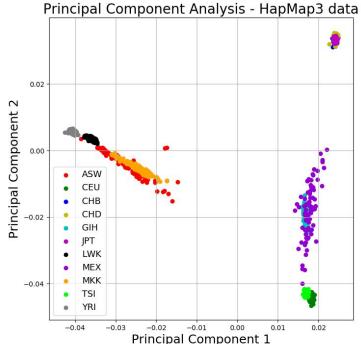
- State-of-the art adjustment methods
 - PCA-based methods

Include Principal components (PCs) as covariates

- Logistic Regression + Top PCs^[1,2]
- EIGENSTRAT^[3]: multi-linear regression + 10 PCs
- Linear mixed models

^[1]Need et al., A genome-wide investigation of snps and cnvs in schizophrenia. 2009, *PLoS Genet*.

^[2]Zeggini et al., Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. 2008, Nat Genet.



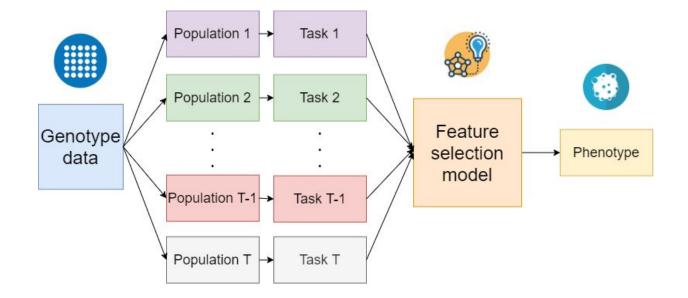
Fast-LMM^[4]

^[3]Price et al., Principal components analysis corrects for stratification in genome-wide association studies. *Nat Genet*.

^[4]Lippert et al., FaST linear mixed models for genome-wide association studies. 2011. *Nat Methods*.

Population stratification

• **Proposed adjustment method**: subpopulations assignment in multitask framework



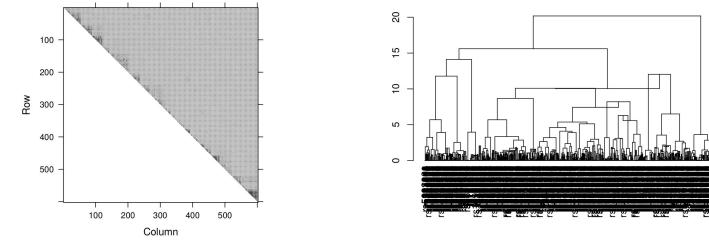
01	02	03	04	05
Single marker analysis	Population stratification	Linkage disequilibrium	Computational limitation	Lack of stability
Testing each SNP individually	Difference in allele frequencies between subpopulations	Dependence relationship between two alleles at two different loci	For complex methods: - Memory errors - Very slow	Susceptibility to small perturbations in the data set

Linkage Disequilibrium (LD):

- Tendency of alleles to be transmitted together, more often that expected by chance alone.
- Usually caused by close proximity of genes in the same chromosome.

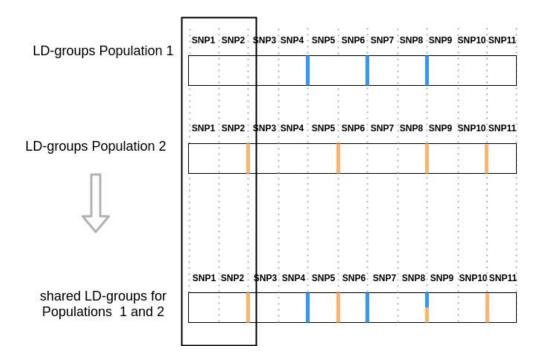
Hierarchical clustering approach^[1]

Performing a spatially-constrained hierarchical clustering



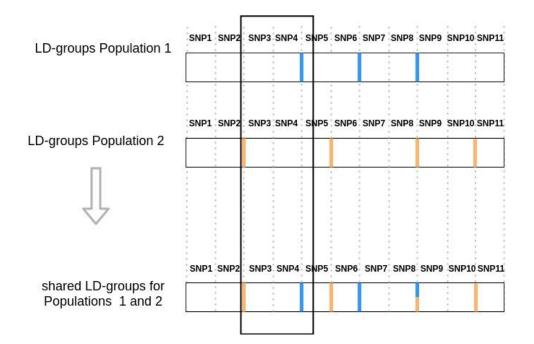
• Choice of LD-groups

Linkage disequilibrium is different in different populations



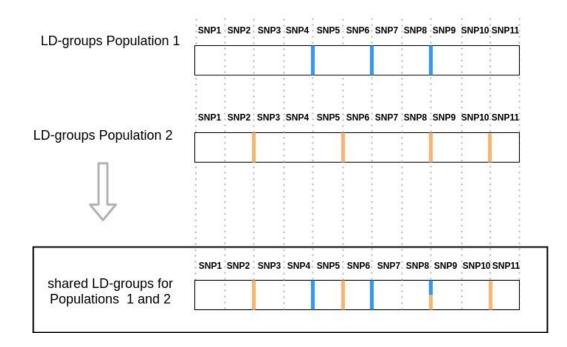
• Choice of LD-groups

Linkage disequilibrium is different in different populations



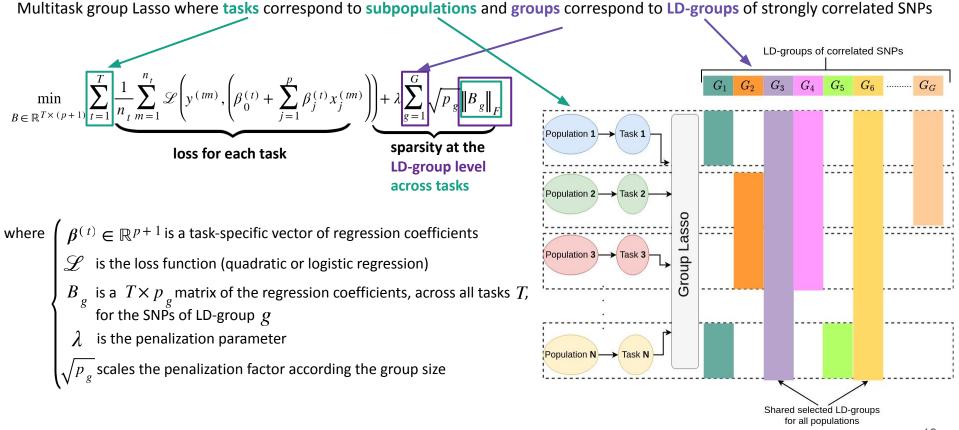
• Choice of LD-groups

Linkage disequilibrium is different in different populations



01	02	03	04	05
Single marker analysis	Population stratification	Linkage disequilibrium	Computational limitations	Lack of stability
Testing each SNP individually	Difference in allele frequencies between subpopulations	Dependence relationship between two alleles at two different loci.	For complex methods: - Memory errors - Very slow	Susceptibility to small perturbations in the data set

Multitask group Lasso for Genome Wide Association studies in diverse populations



⇒ Selection of LD-groups associated with the phenotype across all tasks/populations, or specifically for some tasks/populations

			04	
01	02	03		05
Single marker analysis	Population stratification	Linkage disequilibrium	Computational limitation	Lack of stability
Testing each SNP individually	Difference in allele frequencies between subpopulations	Dependence relationship between two alleles at two different loci	For complex methods: - Memory errors - Very slow	Susceptibility to small perturbations in the data set

Gap Safe screening rules

Gap Safe Screening rules^[1]**:** eliminates features with associated coefficients are proved to be zero at the optimum in order to obtain **more speed up** and to **avoid memory errors**.

Ignoring some variables by exploiting geometric properties of the dual formulation of the following optimization problem:

$$\widehat{\beta}^{(\lambda)} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}} P_{\lambda}(\beta), \text{ for } P_{\lambda}(\beta) := F(\beta) + \lambda \Omega(\beta) := \sum_{i=1}^{n} f_{i}(x_{i}^{\top}\beta) + \lambda \Omega(\beta)$$

where $f_i: \mathbb{R} \mapsto \mathbb{R}$ are convex and differentiable functions and $\Omega: \mathbb{R}^p \mapsto \mathbb{R}_+$ is a group-decomposable norm: $\Omega(\beta) = \sum_{g \in \mathcal{G}} \Omega_g(\beta_g)$ with Ω_p a norm of \mathbb{R}^{n_g}

For group Lasso: the data fitting term is $F(\beta) = \frac{\mathscr{L}(y, \beta X_j)}{2}$,

The *L1/L2-norm* is defined by $\Omega(\beta) = \Omega_{W}(\beta)$:

$$\Omega_{w}(\beta) := \sum_{g \in \mathcal{G}} w_{g} \|\beta_{g}\|_{2} \quad \text{and} \quad \Omega_{w}^{D}(\xi) := \max_{g \in \mathcal{G}} \frac{\|\xi_{g}\|_{2}}{w_{g}}$$

where $w = (w_g)_{g \in \mathcal{G}}$ are weights satisfying $w_g > 0$ for all $g \in \mathcal{G}$ and $\Omega^D_w(\xi)$ is the dual norm along the regularization path.

^[1]Ndiaye et al., Gap Safe Screening Rules for Sparsity Enforcing Penalties. 2017, *Journal of Machine Learning Research 18*.

01	02	03	04	05
Single marker analysis	Population stratification	Linkage disequilibrium	Computational limitation	Lack of stability
Testing each SNP individually	Difference in allele frequencies between subpopulations	Dependence relationship between two alleles at two different loci	For complex methods: - Memory errors - Very slow	Susceptibility to small perturbations in the data set

Stability Selection

Stability selection^[1]**: bootstrap aggregation** procedure where feature selection is performed repeatedly on bootstrap subsamples, and the results of all repetitions are aggregated. It allows a **precise statement** of the significance of the selected features set and **reduce false positives**.

Procedure:

- Identify $S = \{k: \beta_k \neq 0\}$ a set of non-zero inputs of a sparse parameter vector β of observed data (X, y)
- Feature selection is performed on randomly $|I| = \frac{n}{2}$ of observations, where $I \subset \{1, ..., n\}$
- Selection Path: Probability of the selection of a feature $k \in \{1, ..., p\}$

 $\pi_k^{\lambda} = Pr^* \left[k \in \widehat{S}^{\lambda}(I) \right]$, where $\widehat{S}^{\lambda}(I) \subset \{1, ..., p\}$ denotes the selected features by a subsample I

- ⇒ Captures random selection within feature selection algorithms
- For a chosen cut-off $\frac{1}{2} \le \pi_{thre} \le 1$, the set of stable features is:

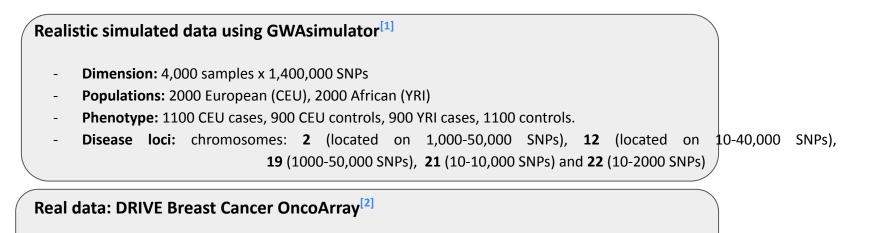
$$\widehat{S}^{stable} = \left\{ k \colon \pi_k^{\lambda} \ge \pi_{thre} \right\}$$

 \Rightarrow Only variables that are selected consistently across all the random halves remain.

^[1]Meinshausen et al,. Stability selection. 2010. Journal of the Royal Statistical Society Series B-Statistical Methodology.

Multitask group Lasso (MuGLasso) implementation

• Datasets

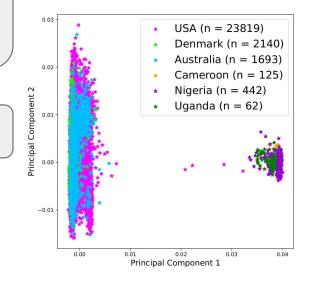


- **Dimension:** 28,281 samples x 528,620 SNPs
- Phenotype: 13,846 cases and 14,435 controls
- **Populations:** USA Uganda Nigeria Cameroon Australia Denmark

- Quality control and preprocessing
 - MAF < 5%
 - HWE-P-Value < 0.0001
 - Remove samples with missing case/control criterion
 - Sex check
 - Remove samples and/or variants with high genotypic missing rate
 - Imputation of missing values: IMPUTE2

- Quality control and preprocessing
 - MAF < 5%
 - HWE-P-Value < 0.0001
 - Remove samples with missing case/control criterion
 - Sex check
 - Remove samples and/or variants with high genotypic missing rate
 - Imputation of missing values: IMPUTE2
- Subpopulations definition

Assign subpopulations in multitask framework according to PCA patterns by using K-means clustering.



- Quality control and preprocessing
 - MAF < 5%
 - HWE-P-Value < 0.0001
 - Remove samples with missing case/control criterion
 - Sex check
 - Remove samples and/or variants with high genotypic missing rate
 - Imputation of missing values: IMPUTE2
- Evaluation
 - Validation using simulated data

Generate simulations with specified multi locus disease model in specified regions

- ⇒ Compute false positives rate
 - Estimation of the stability of the selection ^[1,2]

 $Stability = \widehat{\Phi}(s_1, s_2, \dots s_M) = \frac{1}{M(M-1)} \sum_i \sum_{i \neq i} sim(s_i, s_j)$

Comparison with the state-of-the art methods

^[1]Kuncheva et Al., A stability index for feature selection. 2008, *IASTED International Conference on Artificial Intelligence and Applications*. ^[2]Nogueira et Al., On the Stability of Feature Selection Algorithms. 2018, *Journal of Machine Learning Reasearch 18*.

- Quality control and preprocessing
 - MAF < 5%
 - HWE-P-Value < 0.0001
 - Remove samples with missing case/control criterion
 - Sex check
 - Remove samples and/or variants with high genotypic missing rate
 - Imputation of missing values: IMPUTE2
- Evaluation
 - Validation using simulated data

Generate simulations with specified multi locus disease model in specified regions.

- ⇒ Compute false positives rate
- Estimation of the stability of the selection^[1,2]

$$Stability = \widehat{\Phi}(s_1, s_2, \dots s_M) = \frac{1}{M(M-1)} \sum_i \sum_{j \neq i} sim(s_i, s_j)$$

• Comparison with the state-of-the art methods

^[1]Kuncheva et Al., A stability index for feature selection. 2008, *IASTED International Conference on Artificial Intelligence and Applications*. ^[2]Nogueira et Al., On the Stability of Feature Selection Algorithms. 2018, *Journal of Machine Learning Reasearch 18*.

- Adjusted Lasso: after PCA adjustment for population stratification at the SNP level
- 2. Adjusted group Lasso: after PCA adjustment for population stratification at LD-groups level
- 3. Stratified group Lasso for each subpopulation at LD-groups level
- Stratified Lasso for each subpopulation at the SNP level
- 5. Adjusted GWAS: Classic GWAS after PCA adjustment

- Quality control and preprocessing
 - MAF < 5%
 - HWE-P-Value < 0.0001
 - Remove samples with missing case/control criterion
 - Sex check
 - Remove samples and/or variants with high genotypic missing rate
 - Imputation of missing values: IMPUTE2
- Evaluation
 - Validation using simulated data

Generate simulations with specified multi locus disease model in specified regions.

- ⇒ Compute false positives rate
 - Estimation of the stability of the selection^[1,2]

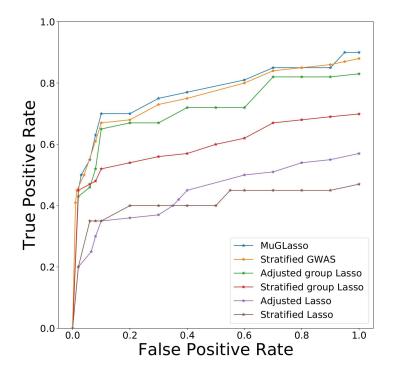
$$Stability = \widehat{\Phi}(s_1, s_2, \dots s_M) = \frac{1}{M(M-1)} \sum_{i=1}^{N} \sum_{j=1}^{N} sim(s_i, s_j)$$

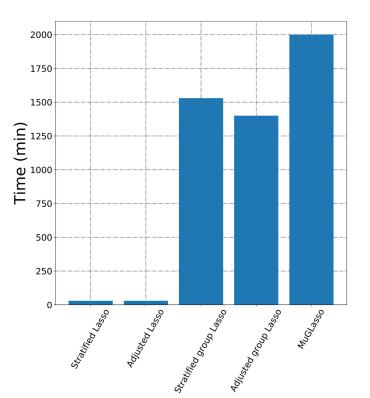
- Comparison with the state-of-the art methods \overline{i} $\overline{j \neq i}$
- Computational time

^[1]Kuncheva et Al., A stability index for feature selection. 2008, *IASTED International Conference on Artificial Intelligence and Applications*. ^[2]Nogueira et Al., On the Stability of Feature Selection Algorithms. 2018, *Journal of Machine Learning Reasearch 18*.

Results of MuGLasso and comparison

Multitask group Lasso outperforms the state-of-the-art methods on simulated data





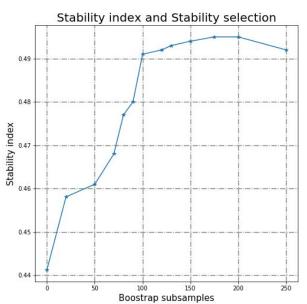
30

MuGLasso results and comparison

Multitask group Lasso is more stable than the state-of-the-art methods.

Simulated data: n=4,000 ; p=1,000,000 ; LD-groups number = 35,792 groups

Methods	Number of selected LD-groups	Number of selected SNPs	Stability index	Selection level
MuGLasso (100 boostraps)	5,623	155,312	0.4912	LD-groups
Adjusted group Lasso	6,054	162,104	0.4134	LD-groups
Stratified group Lasso	4,836	154,732	0.3398	LD-groups
Adjusted Lasso	5,379	158,856	0.2368	Single-SNP
Stratified Lasso	5,704	168,158	0.1742	Single-SNP
Adjusted GWAS	5,063	141,340	-	Single-SNP

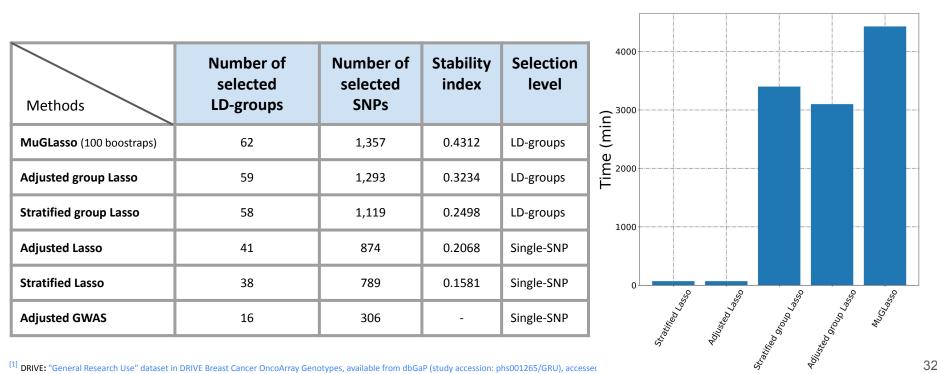


 \Rightarrow The feature selection at the LD-groups level alleviate the curse of dimensionality and the lack of stability.

MuGLasso results and comparison

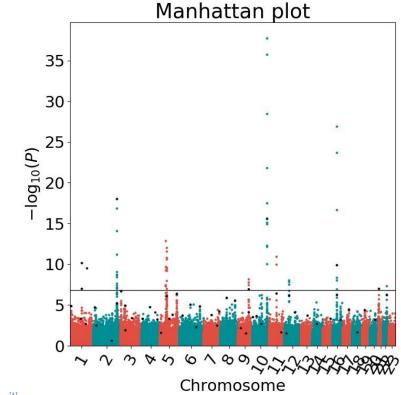
Multitask group Lasso is more stable than the state-of-the-art methods.

Real data: DRIVE Breast Cancer OncoArray^[1] n=28,282 ; p=313,237 ; LD-groups number = 17,782 groups



MuGLasso Lasso results and comparison

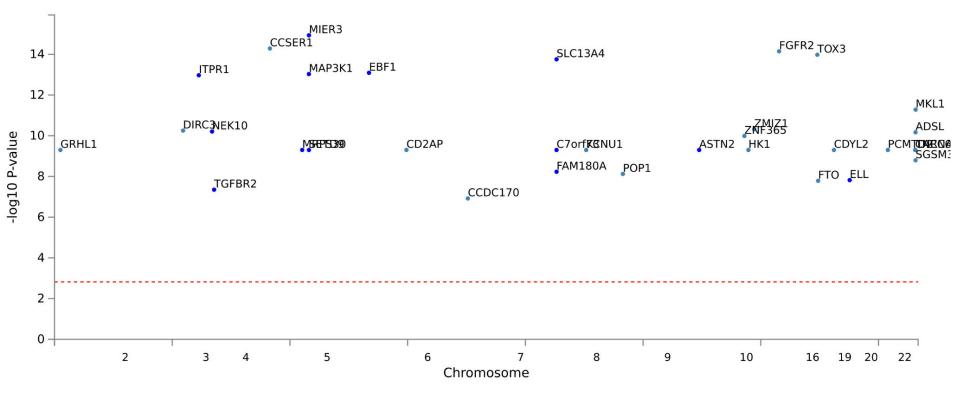
Real data: DRIVE Breast Cancer OncoArray^[1] n=28,282 ; p=313,237 ; LD-groups number = 17,782 groups



Black dots corresponds to Multitask group Lasso **discoveries** (one SNP per LD-group is represented in the Manhattan plot)

Breast cancer risk loci detected by MuGLasso on DRIVE

Mapping of selected SNPs using MuGLasso to genes using FUMA^[*]



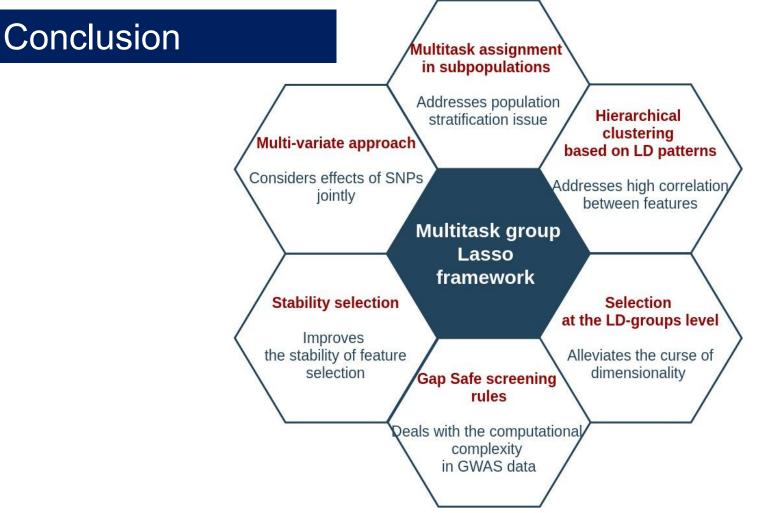
[*] FUMA: https://fuma.ctglab.nl/

Breast cancer risk loci detected by MuGLasso on DRIVE

- All SNPs/genes found by adjusted GWAS were also selected by MuGLasso.
- 9 genes were discovered by adjusted GWAS and 32 genes were discovered by MuGLasso.
- **17 of 32 genes** had been previously identified by a meta-GWAS containing the DRIVE data.
- **7** genes were found in the literature prior evidence of relationship with breast cancer risk or tumor growth.

Genes found by adjusted GWAS	ITPR1, MRPS30, MAP3K1, SETD9, MIER3, EBF1, FGFR2, TOX3, MKL1
Genes found by MuGLasso	ITPR1, MRPS30, MAP3K1, SETD9, MIER3, EBF1, FGFR2, TOX3, MKL1, ADSL, ASTN2, C7orf73, CACNA1I, CCDC170, CCDC91, CCSER1, CD2AP, CDYL2, DIRC3, ELL, ESR1, FTO, GRHL1, HK1, HRSP12, KCNU1, LUC7L3, MED21, NEK10, NUP205, PAX9, POP1, PPFIBP1, PTHLH, REP15, SGSM3, SSBP4, TGFBR2, TNRC6B, ZMIZ1, ZNF365

Genes discovered for subpopulation POP1	ESR1, SGSM3, MED21, REP15
Genes discovered for subpopulation POP2	DIRC3, LUC7L3



Paper: Multitask group Lasso for Genome Wide Association Studies in diverse populations, *submission accepted* in PSB, January 2022, https://www.biorxiv.org/content/10.1101/2021.08.02.454499 Code: https://github.com/asmanouira/MuGLasso_GWAS

Acknowledgements

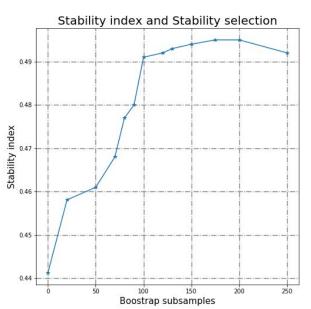
- CBIO (Mines ParisTech)
- GWAS team
- U900 (Institut Curie)
- This work was supported in part by Agence Nationale de la Recherche (ANR-18-CE45-0021-01 and ANR19-P3IA-0001)

MuGLasso results and comparison

Multitask group Lasso is more stable than the state-of-the-art methods.

Simulated data: n=4,000 ; p=1,000,000 ; LD-groups number = 35,792 groups

Methods	Number of selected LD-groups	Number of selected SNPs	Stability index	Selection level
MuGLasso (100 boostraps)	5,623	155,312	0.4912	LD-groups
Adjusted group Lasso	6,054	162,104	0.4134	LD-groups
Stratified group Lasso	4,836	154,732	0.3398	LD-groups
Adjusted Lasso	5,379	158,856	0.2368	Single-SNP
Stratified Lasso	5,704	168,158	0.1742	Single-SNP
Adjusted GWAS	5,063	141,340	-	Single-SNP



 \Rightarrow The feature selection at the LD-groups level alleviate the curse of dimensionality and the lack of stability.

MuGLasso results and comparison

Multitask group Lasso is more stable than the state-of-the-art methods.

Real data: DRIVE Breast Cancer OncoArray^[1] n=28,282 ; p=313,237 ; LD-groups number = 17,782 groups

