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Genome Wide Association Studies

Goal: Find association between the genotype and the phenotype.

- The genotype: Single Nucleotide Polymorphism (SNP) arrays.
- The phenotype:
e Quantitative: BMI, weight, height, etc.

e (Qualitative: Case-control study



n From GWAS to Machine Learning

e Single-marker analysis:

Given a phenotype y, X is the genotype matrix:

For each feature Xj , we fit a single-predictor equation y =ﬂ0+ ﬂij + & = p-value from a t-test against an intercept-only model Hoz {ﬂj:O} .

e Multi-variate approach: Feature selection based on regularization

-

- Lasso: shrinkage and feature selection (Ll regularization)
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where ﬂ isa p X 1 vector corresponds to the SNP effects

Q is the regularizer

A isthe penalization term

where & is the set of groups
ﬂg is ﬁ restricted to the SNPsin g

,/Pg scales the penalization factor according to the group size

where T is the number of tasks to learn the training set

{(xrm,yrm) fort=1..T andm=1..nt}



n Population stratification

Population stratification refers to the presence of differences in allele frequencies between subpopulations due to different

ancestry.
Principal Component Analysis - HapMap3 data
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Need et al.,A genome-wide investigation of snps and cnvs in schizophrenia. 2009, PLoS Genet.
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n Population stratification

Proposed adjustment method: subpopulations assignment in multitask framework
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n Linkage Disequilibrium groups clustering

Linkage Disequilibrium (LD):
e Tendency of alleles to be transmitted together, more often than expected, by chance alone.

e  Usually caused by nearby of genes in the same chromosome.

Hierarchical clustering approach!!

Performing a spatially-constrained hierarchical clustering
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Column
= Selection at the LD-group level instead of single-SNP level.

1 Ambroise et al.., Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics. 2019. arXiv:1902.01596v1 [math.ST].



n Linkage Disequilibrium groups clustering

e Choice of LD-groups

Linkage disequilibrium is different in different populations

LD-groups Population 1

LD-groups Population 2

shared LD-groups for
Populations 1 and 2

SNP1 SNP2 . §

NP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10 SNP11

SNP1 SNP2 §

NP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10 SNP11

SNP1 SNP2

NP3 SNP4 SNP5 SNP6- SNP7 SNP8 SNP9 SNP10SNP11
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n Linkage Disequilibrium groups clustering

e Choice of LD-groups

Linkage disequilibrium is different in different populations
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n Linkage Disequilibrium groups clustering

e Choice of LD-groups

Linkage disequilibrium is different in different populations

. SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10 SNP11
LD-groups Population 1

SNP1 SNP2 SNP3 SNP4 SNPS5 SNP6 SNP7 SNP8 SNP9 SNP10 SNP1l

LD-groups Population 2

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10SNP11

shared LD-groups for i
Populations 1 and 2




I3 Multitask group Lasso for Genome Wide Association studies in diverse populations

Multitask group Lasso where tasks correspond to subpopulations and groups correspond to LD-groups of strongly correlated SNPs

LD-groups of correlated SNPs
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= Selection of LD-groups associated with the phenotype across all tasks/populations, or specifically for some tasks/populations 10



B Gap Safe screening rules

Gap Safe Screening rules'™: eliminates features with associated coefficients are proved to be zero at the optimum in order to obtain
more speed up and to avoid memory errors.

Ignoring some variables by exploiting geometric properties of the dual formulation of the following optimization problem:
n
) € argmin P, (f) . for P ,(B):=F () +A2(p):= ) f (x]B) +22(p)
peRP i=1

where f ; R —~ R are convex and differentiable functions and Q:RP— R +is a group-decomposable norm: Q(p) = Z Qg( ﬂg)
with Q, anorm of R"z g€ ¥

mNdiaye et al.,Gap Safe Screening Rules for Sparsity Enforcing Penalties. 2017, Journal of Machine Learning Research 18.

11



B stability Selection

Stability selection': bootstrap aggregation procedure where feature selection is performed repeatedly on bootstrap subsamples,
and the results of all repetitions are aggregated. It allows a precise statement of the significance of the selected features set and
reduce false positives.

Feature selection on random
halves subsamples
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n/2

16 LD-groups
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= Only variables that are selected consistently across all the random halves remain.
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IMeinshausen et al,. Stability selection. 2010. Journal of the Royal Statistical Society Series B-Statistical Methodology.



- Multitask group Lasso (MuGLasso) implementation

® Datasets

ﬁealistic simulated data using GWAsimulator'*

- Dimension: 4,000 samples x 1,400,000 SNPs
- Populations: 2000 European (CEU), 2000 African (YRI)
- Phenotype: 1100 CEU cases, 900 CEU controls, 900 YRI cases, 1100 controls.

K 19 (1000-50,000 SNPs), 21 (10-10,000 SNPs) and 22 (10-2000 SNPs)

~

- Disease loci: chromosomes: 2 (located on 1,000-50,000 SNPs), 12 (located on 10-40,000 SNPs),

J

4 Real data: DRIVE Breast Cancer OncoArray'”

- Dimension: 28,281 samples x 528,620 SNPs
- Phenotype: 13,846 cases and 14,435 controls
- Populations: USA — Uganda — Nigeria — Cameroon — Australia — Denmark

-

~

(g et al., GWAsimulator: a rapid whole-genome simulation program.2008.Bioinformatics, Volume 24, Issue 1, 1 January 2008, Pages 140-142.

(2]

DRIVE: "General Research Use" dataset in DRIVE Breast Cancer OncoArray Genotypes, available from dbGaP (study accession: phs001265/GRU), accessed under project #17707.
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I MuGLasso implementation

e Quality control and preprocessing

/"« MAF < 5%
HWE-P-Value < 0.0001
e Remove samples with missing case/control criterion

e Sex check
e Remove samples and/or variants with high genotypic missing rate
\- Imputation of missing values: IMPUTE2

14



I MuGLasso implementation

e Quality control and preprocessing

/"o MAF < 5% N\

¢ HWE-P-Value < 0.0001 0.03

* » USA (n = 23819)
* Remove samples with missing case/control criterion +  Denmark (n = 2140)
e Sex check ol »  Australia (n = 1693)
* Remove samples and/or variants with high genotypic missing rate Cameroon (n = 125)
. . N +» Nigeria (n = 442
\_* Imputation of missing values: IMPUTE2 Y : ' Ugganda((n - 62))
g 0.01 4
e Subpopulations definition £ .
(@) * %
Assign subpopulations in multitask framework according to PCA patterns using § - &
K-means clustering. S ** B

—0.011

0.00 0.01 002 0.03 0.04
Principal Component 1

POP1: USA, Denmark and Australia and POP2: Cameroon, Nigeria and Uganda
15



- MuGLasso implementation

e Quality control and preprocessing

/"« MAF < 5%

e HWE-P-Value < 0.0001

¢ Remove samples with missing case/control criterion

e Sex check

e Remove samples and/or variants with high genotypic missing rate
K- Imputation of missing values: IMPUTE2

/

e Evaluation

/ e Validation using simulated data
Generate simulations with specified multi locus disease model in specified regions
= Compute false positives rate
e  Estimation of the stability of the selection !
— 1
Stability = ®(sq, Sy, ... Sy) = mz Z sim(sy, s;)

i Jj=#i
e Comparison with the state-of-the art methods

\

~

iuncheva et Al., A stability index for feature selection. 2008, IASTED International Conference on Artificial Intelligence and Applications.
mNogueira et Al., On the Stability of Feature Selection Algorithms. 2018, Journal of Machine Learning Reasearch 18.
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- MuGLasso implementation

e Quality control and preprocessing

/"« MAF < 5%
¢ HWE-P-Value < 0.0001
e Remove samples with missing case/control criterion
e Sex check

e Remove samples and/or variants with high genotypic missing rate
\- Imputation of missing values: IMPUTE2

/

e Evaluation

e Validation using simulated data

= Compute false positives rate

e  Estimation of the stability of the selection'"?

S 1 ,
Stability = ®(sq, S3, ... Sy) = mz ann(si,sj)

i j#

e  Comparison with the state-of-the art methods

\_

Generate simulations with specified multi locus disease model in specified regions.

[1]
[2]

Kuncheva et Al., A stability index for feature selection. 2008, IASTED International Conference on Artificial Intelligence and Applications.
Nogueira et Al., On the Stability of Feature Selection Algorithms. 2018, Journal of Machine Learning Reasearch 18.

Adjusted Lasso: after PCA
adjustment for population
stratification at the SNP level
Adjusted group Lasso: after PCA
adjustment for population
stratification at LD-groups level
Stratified group Lasso for each
subpopulation at LD-groups level
Stratified Lasso for each
subpopulation at the SNP level
Adjusted GWAS: Classic GWAS
after PCA adjustment

17



- MuGLasso implementation

[1]
[2]

® Quality control and preprocessing

/"« MAF < 5%
HWE-P-Value < 0.0001
e Remove samples with missing case/control criterion

Sex check

e Remove samples and/or variants with high genotypic missing rate
K- Imputation of missing values: IMPUTE2

-

e Evaluation

e Validation using simulated data

= Compute false positives rate

e Estimation of the stability of the selection'"?!

~ 1
Stability = ®(sq, Sy, ... Sy) = mz zgim(si,sj)
e Comparison with the state-of-the art methods = ¢ /=i

e Computational time

\_

Generate simulations with specified multi locus disease model in specified regions.

Kuncheva et Al., A stability index for feature selection. 2008, IASTED International Conference on Artificial Intelligence and Applications.
Nogueira et Al., On the Stability of Feature Selection Algorithms. 2018, Journal of Machine Learning Reasearch 18.
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- MuGLasso outperforms the state-of-the-art methods on simulated data

True Positive Rate
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- MuGLasso improve the stability of the selection on DRIVE data

[

Real data: DRIVE Breast Cancer OncoArray'': n=28,282 ; p=313,237 ; LD-groups = 17,782

Number of | Stability @ Selection
Methods selected index level

LD-groups
MuGLasso (100 boostraps) 62 0.4312 LD-groups
Adjusted group Lasso 59 0.3234 LD-groups
Stratified group Lasso 58 0.2498 LD-groups
Adjusted Lasso 41 0.2068 Single-SNP
Stratified Lasso 38 0.1581 Single-SNP
Adjusted GWAS 16 - Single-SNP

Stability index

0.49 1

0.48 1

0.47 1

0.46 1

045

044 1

Stability index and Stability selection

!

|

|
|
|
|
|

|
|
|
|

100 150
Boostrap subsamples

= The feature selection at the LD-groups level alleviate the curse of dimensionality and the lack of stability.
1 DRIVE: "General Research Use" dataset in DRIVE Breast Cancer OncoArray Genotypes, available from dbGaP (study accession: phs001265/GRU), accessed under project #17707.

n
= -
=]
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- Breast cancer risk loci detected by MuGLasso on DRIVE

e All SNPs/genes found by adjusted GWAS were also selected by MuGLasso.
e 9genes were discovered by adjusted GWAS and 32 genes were discovered by MuGLasso.
e 17 of 32 genes had been previously identified by a meta-GWAS containing the DRIVE data.

e 7 genes were found in the literature prior evidence of relationship with breast cancer risk or tumor growth.

Genes found by adjusted GWAS ITPR1, MRPS30, MAP3K1, SETD9, MIER3, EBF1, FGFR2, TOX3, MKL1

Genes found by MuGLasso ITPR1, MRPS30, MAP3K1, SETD9, MIER3, EBF1, FGFR2, TOX3, MKL1, ADSL, ASTN2, C7orf73,
CACNA1I, CCDC170, CCDC91, CCSER1, CD2AP, CDYL2, DIRC3, ELL, ESR1, FTO, GRHL1, HK1,
HRSP12, KCNU1, LUC7L3, MED21, NEK10, NUP205, PAX9, POP1,PPFIBP1, PTHLH, REP15, SGSM3,
SSBP4, TGFBR2, TNRC6B, ZMIZ1, ZNF365

Genes discovered for subpopulation POP1 ESR1, SGSM3, MED21, REP15

Genes discovered for subpopulation POP2 DIRC3, LUC7L3

21
POP1: USA, Denmark and Australia and POP2: Cameroon, Nigeria and Uganda



I Conclusion and future work

01 02 03 04 05
Multi-variate Multitask LD-groups Safe screening Stability
approach assignment clustering rules selection
e Consider the e Address population ~ ® Address high ® Speed up the e Improve the

effect of SNPs stratification by correlation solvers and avoid stability of the

jointly assigning an input between SNPs memory errors in feature selection
task to each e Alleviate the curse high scale using subsampling
subpopulation of dimensionality procedure

Paper: Multitask group Lasso for Genome Wide Association Studies in diverse populations, PSB 2022, https://www.biorxiv.org/content/10.1101/2021.08.02.454499

Code: https://github.com/asmanouira/MuGLasso_GWAS
Contact: asma.nouira@mines-paristech.fr
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I Conclusion and future work

01 02 03

Multi-variate Multitask 5
e . 8 grm.xps Safe screening rules Stability selection
approach assighment clustering

e Consider the e Address population ® Address high Speed up the
effect of SNPs stratification by correlation between solvers and avoid
jointly assigning an input task SNPs memory errors in

to each subpopulation e Alleviate the curse high scale

of dimensionality

Future work

Sparse MuGLasso (SMuG Lasso)

e Add an L1-norm sparsity penalty to improve the LD-groups
selection for specific-populations
e Extend MuGLasso to general applications

Improve the stability
of the feature
selection using
subsampling
procedure

Paper: Multitask group Lasso for Genome Wide Association Studies in diverse populations, PSB 2022, https://www.biorxiv.org/content/10.1101/2021.08.02.454499

Code: https://github.com/asmanouira/MuGLasso_GWAS
Contact: asma.nouira@mines-paristech.fr
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I Gap Safe screening rules

Gap Safe Screening rules'): eliminates features with associated coefficients are proved to be zero at the optimum in order to obtain
more speed up and to avoid memory errors.

Ignoring some variables by exploiting geometric properties of the dual formulation of the following optimization problem:

) € argmin P, (). for P,(f) :=F(p) +A2(p):= D, f (x] ) +12(p)

pERP i=1

where f i R —~ R are convex and differentiable functions and Q:R? — R+is a group-decomposable norm: Q(f) = Z .Qg( ﬁg)
with Q, anorm of R"z 8e¥

. _ Ef(y,ﬂXj)
For group Lasso: the data fitting term is F( j) =

The L1/L2-norm is defined by £2( ) =QW( p):
I Cfg”
Q)= w Bl and  QP(&) =max ——

geG 8E€EY Wg

where w =( wg) are weights satisfying wg >0 forall g€ & and QQ( &) is the dual norm along the regularization path.
gEZ
26

mNdiaye et al.,Gap Safe Screening Rules for Sparsity Enforcing Penalties. 2017, Journal of Machine Learning Research 18.



- Stability Selection

Stability selection': bootstrap aggregation procedure where feature selection is performed repeatedly on bootstrap subsamples,
and the results of all repetitions are aggregated. It allows a precise statement of the significance of the selected features set and

reduce false positives.

Procedure:
e Identify S= {k:ﬂk * 0} a set of non-zero inputs of a sparse parameter vector f of observed data ( X, y)

®  Feature selection is performed on randomly |I| :% of observations, where 1 c {1, ...,n}
e  Selection Path: Probability of the selection of a feature k€ {1, ...,p}
][i:P}" * [k c :S'\/i( D ] , where SA(T) c {1,...,p} denotes the selected features by a subsample |
= Captures random selection within feature selection algorithms

< 1, the set of stable features is:

1
° For a chosen cut-off — < T,
2 nre

:S'\stable — {k: s

= Only variables that are selected consistently across all the random halves remain.

IMeinshausen et al,. Stability selection. 2010. Journal of the Royal Statistical Society Series B-Statistical Methodology.
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