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Appendix A. Data availability

Appendix A.1. Simulated data

Code to reproduce our simulations is available on https://github.com/asmanouira/

MuGLasso_GWAS

Table A1 shows the location of the predefined disease loci, for each population. Table A2
shows the number of predefined disease loci, both common to both population and specific to
each population.

Table A1. For simulated data, location of pre-
defined disease loci represented by start/end
positions information in each subpopulation
through chromosomes: 2, 12, 19, 21 and 22.

Chromosome
Subpopulations

CEU YRI
2 1 000 - 50 000 1 000 - 50 000
12 10 - 37 000 10 - 40 000
19 1 000 - 50 000 1 000 - 50 000
21 10 - 10 000 10 - 7 000
22 - 10 - 2 000

Table A2. For simulated data, number of
predefined causal SNPs

Populations Number of SNPs
Specific-CEU 2 999
Specific-YRI 4 989
Shared (CEU+YRI) 141 982
Total 149 970



Appendix A.2. DRIVE

Data access The dataset “General Research Use” in DRIVE Breast Cancer OncoAr-
ray Genotypes is available from the dbGaP controlled-access portal, under Study Ac-
cession phs001265.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study\_id=phs001265.v1.p1). Researchers can gain access the data by applying to the
data access committee, see https://dbgap.ncbi.nlm.nih.gov.

Ethics approval The dataset was obtained from NIH after ethical review of project #17707,
titled ”Network-guided multi-locus biomarker discovery”, and used under approval of this
request (#67806-4).

Acknowledgments OncoArray genotyping and phenotype data harmonization for the Dis-
covery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) breast-cancer case
control samples was supported by X01 HG007491 and U19 CA148065 and by Cancer Re-
search UK (C1287/A16563). Genotyping was conducted by the Center for Inherited Disease
Research (CIDR), Centre for Cancer Genetic Epidemiology, University of Cambridge, and
theNational Cancer Institute. The following studies contributed germline DNA from breast
cancer cases and controls: the Two Sister Study (2SISTER), Breast Oncology Galicia Net-
work (BREOGAN), Copenhagen GeneralPopulation Study (CGPS), Cancer Prevention Study
2 (CPSII), The European Prospective Investigation intoCancer and Nutrition (EPIC), Mel-
bourne Collaborative Cohort Study (MCCS), Multiethnic Cohort (MEC), NashvilleBreast
Health Study (NBHS), Nurses Health Study (NHS), Nurses Health Study 2 (NHS2), Polish
Breast CancerStudy (PBCS), Prostate Lung Colorectal and Ovarian Cancer Screening Trial
(PLCO), Studies of Epidemiologyand Risk Factors in Cancer Heredity (SEARCH), The Sister
Study (SISTER), Swedish Mammographic Cohort (SMC), Women of African Ancestry Breast
Cancer Study (WAABCS), Women’s Health Initiative (WHI).

Appendix B. Supplementary Methods

Appendix B.1. LD groups across populations

Figure B1 illustrates the process by which we obtain LD-groups across populations, from
LD-groups obtained on each population separately using adjacency-constrained hierarchical
clustering (see Section 2.2.1)

Appendix B.2. Multitask group lasso

Figure B2 illustrates the architecture of the multitask group Lasso described in Section 2.3.



Fig. B1. Choice of shared LD-groups choice after adjacency-constrained hierarchical clustering for
each population

Fig. B2. Multitask group Lasso architecture

Appendix B.3. Gap safe screening rules

Let X ∈ Rn×d be a design matrix and y ∈ Rn the corresponding vector of outcomes, which
can be binary or real-valued. We consider the following optimization problem:

β̂
(λ)
∈ arg min

β∈Rd
Pλ(β) :=

n∑
i=1

fi

(
X>i. β

)
+ λΩ(β), (B.1)



where all fi : R→ R are convex and differentiable functions with 1/γ−Lipschitz gradient, and
Ω : Rd → R+ is a norm that is group-decomposable, i.e., the set of d features is partitioned in
G groups of sizes d1, d2, . . . , dG, and

Ω(β) =

G∑
g=1

Ωg

(
β(g)

)
,

where each Ωg is a norm on Rdg and, as previously, β(g) corresponds to the coefficients of β
restricted to the features in group g. As before, the λ parameter is a non-negative constant
controlling the trade-off between the data fitting term and the regularization term.

Equation (2) is a special case of Equation (B.1) because the squared loss and the logistic
loss are convex and differentiable.

Safe screening rules make it possible to solve such problems more efficiently by discarding
features whose coefficients are guaranteed to be zero at the optimum, prior to using a solver.
They usual rely on the dual formulation of Equation (B.1):

θ̂
(λ)

= arg max
θ∈∆X

Dλ(θ) := −
n∑
i=1

f∗i (−λθi), (B.2)

where f∗i : R→ R is the Fenchel-Legendre transform of fi, defined by f∗i (u) = supz∈R〈z, u〉−fi(z)
and ∆X ⊂ Rn is defined by ∆X =

{
θ ∈ Rn : ∀g = 1, . . . , G,ΩD

g (X(g)>θ) ≤ 1
}
, where ΩD

g : Rpg → R
is the conjugate norm of Ωg, defined by ΩD

g (u) = maxzinRpg :Ωg(z)≤1〈z,u〉, and X(g) ∈ Rn×pg is
the design matrix X restricted to the features/columns in group g.

In our setting,

• ΩD
g (u) =

∥∥∥β(g)
∥∥∥

2
and ΩD(u) = maxg=1,...,G

1
wg

∥∥u(g)
∥∥

2
.

• If one uses the squared loss, that is to say, fi(z) = 1
2(yi− z)2, then f∗i (z) = 1

2z
2 + yiz and

the Lipschitz constant is γ = 1.

• If one uses the logistic loss, that is to say, y ∈ {0, 1}n and fi(z) = −yiz+ log(1 + exp(z)),

then

f∗i (z) =

{
(z + yi) log(z + yi) + (1− (z + yi)) log(1− (z + yi)) if 0 ≤ (z + yi) ≤ 1

+∞ otherwise,

and the Lipschitz constant is γ = 4.

The general idea of safe screening rules, introduced by [EGVR10], is to find a region R ⊂ Rn

such that if θ̂
(λ)
∈ R, for any g ∈ {1, . . . , G},

ΩD
g

(
X(g)>θ̂

(λ)
)
< 1⇒ β̂

(λ)
= 0.

Gap safe screening rules [N+17] exploit the duality gap (Pλ(β)−Dλ(θ)) to obtain the radius
of the safe region R. More specifically, Ndiaye et al. show that ∀β ∈ Rp, ∀θ ∈ ∆X ,∥∥∥θ̂(λ)

− θ
∥∥∥

2
≤

√
2(Pλ(β)−Dλ(θ))

γλ2
,



which leads them to define, for any β ∈ Rp and θ ∈ ∆X , the ball centered in θ and of radius√
2Pλ(β)−Dλ(θ)

γλ2 as a safe region, that is to say a region that is guaranteed to contain θ̂
(λ)
.

Appendix B.4. Measuring selection stability

To measure the stability of a feature selection property, we use the sample’s Pearson
coefficient [NB16]. This stability index is closely related to that proposed by Kuncheva [Kun08]
and is appropriate for the comparison of feature sets of different sizes. This index relies on
repeating the feature selection procedure M time (in this work, M = 10) and evaluating the
overlap if the M resulting feature sets.

Each of the M sets of selected features can be represented by an indicator vector s ∈ {0, 1}p,
where sj = 1 if feature j is selected and 0 otherwise. The stability index between two feature
sets S and S ′, represented by their indicator vectors s and s′, is computed as the Pearsons’s
correlation between these two vectors:

φ(S,S ′) =

∑p
j=1(sj − s̄)(s′j − s̄′)√∑p

j=1(sj − s̄)2
√∑p

j=1(s′j − s̄′)2
, (B.3)

where s̄ = 1
p

∑p
j=1 sj and s̄′ = 1

p

∑p
j=1 s

′
j.

Note that, because
∑p

j=1 sj = |S| ,
∑p

j=1 sjs
′
j = |S ∩ S ′| , and s2

j = sj , we can rewrite Equa-
tion (B.3) as

φ(S,S ′) =
|S ∩ S ′| − 1

p |S| |S
′|√

|S|
(

1− |S|p
)√
|S ′|

(
1− |S

′|
p

) ,
hence interpreting this index as the size of the intersection of the two sets, corrected by

chance, that is to say, ensuring that the expected value of the index is 0 when the two selections
are random.

The stability index between M sets of selected features is computed as the average pairwise
stability index between all possible pairs of sets of selected features:

φ(S1,S2, . . . ,SM ) =
M(M − 1)

2

M∑
k=1

M∑
l=k+1

φ(Sk,Sl). (B.4)

Appendix C. Supplementary Results

Appendix C.1. PCA of the genotypes

Figure C1 shows the genotypes of the simulated data (Figure C1a) and the DRIVE data
(Figure C1b) projected on the two first principal components of the data.

Appendix C.2. Runtimes

Figure C2 shows the runtimes of the different Lasso methods on simulated data.
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Fig. C1. PCA for simulated and real datasets
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Fig. C2. Runtimes of the different Lasso approaches.



Appendix C.3. Breast cancer risk loci detected by MuGLasso on DRIVE

On the DRIVE dataset, MuGLasso selected 1 357 SNPs, forming 62 LD groups. Those
SNPs include all the 306 SNPs that are significant in the adjusted GWAS approach. We used
FUMA [WTVBP17] to analyze the remaining 1 051 SNPs, and found that 57% of these SNPs
are within 10kb of protein coding genes. Hence MuGLasso identifies a total of 32 genes (listed
in in Table C1), in addition to the 9 genes (ITPR1, MRPS30, MAP3K1, SETD9, MIER3,
EBF1, FGFR2, TOX3 and MKL1 ) identified by the adjusted GWAS.

Out of these 32 genes, 17 were previously identified in breast cancer meta-analyses which
data include our 28 281 samples from the General Research Use dataset of the DRIVE Breast
Cancer OncoArray Genotypes (see Table C1). More specifically, these studies respectively
used 10 707 ER-negative breast cancer cases 76 649 controls [GC+13] 45 290 cases and 41 880
controls of European ancestry [M+13], 62 623 breast cancer cases and 61 696 controls [M+15],
122 977 cases and 105 974 controls of European ancestry together with 14 068 cases and 13 104
controls of East Asian ancestry [M+17a], and 210 088 controls (9 494 of which are BRCA1
mutation carriers) and 30 882 cases (21 468 ER-negative cases and 9 414 BRCA1 mutation
carriers), all of European origin [M+17].

This suggests that MuGLasso was able to rescue loci that are significant in a better-
powered study (that is to say, a study with a larger number of samples).

In addition, we were able to find in the literature prior evidence of relationship with breast
cancer risk or tumor growth for 7 additional genes, suggesting biological relevance of the
MuGLasso findings.

Further analyses would be required to really get to the biological interpretation of these
results. In particular, we restricted ourselves to mapping SNPs to genes based on a 10kb win-
dow, where other authors rather use 50kb, and FUMA provides many additional possibilities
using known eQTLs and chromatin interactions across all tissues or for relevant tissues. In
addition, pathway enrichment analyses could also be very relevant. One could also compare
the selected SNPs to those significant in large meta-analyses such as [M+17,M+17a] in a more
systematic manner to investigate how much power is gained by using MuGLasso on a subset
of these GWAS data sets. Finally, we have analyzed jointly all selected SNPs and have not
distinguished between those that are specific to one of the two populations and those that are
common to both.



Table C1. The 32 potential breast cancer risk genes within 10kb of loci identified by Mu-
GLasso and not the adjusted GWAS, together with information as to their biological relevance.

Genes found in meta-GWAS including the samples used in this work
Gene symbols Evidence
ASTN2 M+17a
CCDC170 GC+13,M+13,M+15,M+17a,M+17
CDYL2 M+13,M+15,M+17a
DIRC3 M+13,M+15,M+17a,M+17
ELL M+13,M+15,M+17a,M+17
ESR1 GC+13,M+15,M+17a,M+17
FTO GC+13,M+13,M+15,M+17a,M+17
GRHL1 M+17a
KCNU1 M+15,M+17a
NEK10 M+13,M+15,M+17a,M+17
PAX9 M+13,M+15,M+17a
PTHLH GC+13,M+13,M+15,M+17a,M+17
SSBP4 M+17a
TGFBR2 M+13,M+15,M+17a
TNRC6B M+17a
ZMIZ1 M+13,M+15,M+17a
ZNF365 M+17a,M+17

Genes found to be associated with breast cancer risk or tumor growth in the literature
Gene symbols Evidence
ADSL oncogenic driver in triple negative breast cancer [Z+19]
CACNA1I underexpressed in breast cancer [P+17]
CCDC91 likely target gene of breast cancer risk variants [F+19]
NUP205 forms a complex with NUP93 which regulates breast tumor growth [B+20]
POP1 expression correlates with prognosis in breast cancer [L+21]
PPFIBP1 promotes cell motility and migration in breast cancer [C+16]
SGSM3 associated with breast cancer in a Chinese population [TZS17]

Other genes
C7orf73, CCSER1, CD2AP, HK1, HRSP12, LUC7L3, MED21, REP15

Supplementary References

B+20. Simone Bersini et al. Nup93 regulates breast tumor growth by modulating cell prolif-
eration and actin cytoskeleton remodeling. Life Sci Alliance, 3(1), 2020.

C+16. Sara Chiaretti et al. Effects of the scaffold proteins liprin-α1, β1 and β2 on invasion by
breast cancer cells. Biol Cell, 108(3):65–75, 2016.

EGVR10. Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani. Safe feature elimination for the
lasso and sparse supervised learning problems. arXiv preprint arXiv:1009.4219, 2010.

F+19. Manuel A Ferreira et al. Genome-wide association and transcriptome studies identify
target genes and risk loci for breast cancer. Nat Commun, 10(1):1–18, 2019.

GC+13. Montserrat Garcia-Closas et al. Genome-wide association studies identify four ER
negative–specific breast cancer risk loci. Nat Genet, 45(4):392–398, 2013.

Kun08. Ludmila I. Kuncheva. A stability index for feature selection. IASTED ICAIA, 2008.
L+21. Yang Liu et al. Identification of a three-RNA binding proteins (RBPs) signature pre-

dicting prognosis for breast cancer. Front Oncol, page 2150, 2021.



M+13. Kyriaki Michailidou et al. Large-scale genotyping identifies 41 new loci associated with
breast cancer risk. Nat Genet, 45(4):353–361, 2013.

M+15. Kyriaki Michailidou et al. Genome-wide association analysis of more than 120,000 indi-
viduals identifies 15 new susceptibility loci for breast cancer. Nat Genet, 47(4):373–380,
2015.

M+17a. Kyriaki Michailidou et al. Association analysis identifies 65 new breast cancer risk loci.
Nature, 551(7678):92–94, 2017.

M+17. Roger L Milne et al. Identification of ten variants associated with risk of estrogen-
receptor-negative breast cancer. Nat Genet, 49(12):1767–1778, 2017.

N+17. Eugene Ndiaye et al. Gap safe screening rules for sparsity enforcing penalties. Journal
of Machine Learning Research 18, 2017.

NB16. Sarah Nogueira and Gavin Brown. Measuring the stability of feature selection. Joint
European Conference on Machine Learning and Knowledge Discovery in Databases,
2016.

P+17. Nam Nhut Phan et al. Voltage-gated calcium channels: Novel targets for cancer therapy.
Oncol Lett, 14(2):2059–2074, 2017.

TZS17. Tan Tan, Kai Zhang, and Wenjun Chen Sun. Genetic variants of ESR1 and SGSM3
are associated with the susceptibility of breast cancer in the Chinese population. Breast
Cancer, 24(3):369–374, 2017.

WTVBP17. Kyoko Watanabe, Erdogan Taskesen, Arjen Van Bochoven, and Danielle Posthuma.
Functional mapping and annotation of genetic associations with fuma. Nat Commun,
8(1):1–11, 2017.

Z+19. Giada Zurlo et al. Prolyl hydroxylase substrate adenylosuccinate lyase is an oncogenic
driver in triple negative breast cancer. Nat Commun, 10(1):1–15, 2019.


